INFLUENCE OF GRAIN SIZE ON MICROSTRUCTURE AND POROSITY OF BIOCOMPTIBLE TI-35,5Nb-5,7Ta ALLOY PROCESSED VIA POWDER METALLURGY
نویسندگان
چکیده
Beta-titanium alloys containing only fully biocompatible elements are very perspective materials for production of bioimplants. They have good properties for use as biomaterials, including above mentioned biochemical compatibility, low elastic modulus (important for biomechanical compatibility), in comparisson with previously used alloys. Moreover they are suitable for forging. Perspective method with respect to final price is powder metallurgy. There are several advantages in compare with usual methods like arc melting. On the other hand the problem of powder metallurgy could be the porosity of the final product after sintering. In this paper, the influence of the grain size and parameters of sintering used during the preparation of biocompatible Ti-35,5Nb-5,7Ta alloy on its microstructure and compactness, which influence properties of the alloy, were studied. Measurements of porosity depending on sintering time at 1400°C were made. Furthermore the microstructure of specimens and local chemical composition were observed. The object was to obtain fully compact specimen without pores by hot forging of specimens prepared via CIP method (cold isostatic pressing and subsequent sintering).
منابع مشابه
Fracture Mechanism of CoCrMo Porous Nano-composite Prepared by Powder Metallurgy Route
The main aim of this research was to find the mechanism for the failure of the CoCrMo porous nano-composite by characterizing microstructural changes and fractured surface after compression test. For this purpose, porous nano-composites were prepared with the addition of bioactive glass nano-powder to Co-base alloy with 22.5% porosity by the combination of space-holder and powder metallurgy tec...
متن کاملEffect of Density on the Microstructure and Mechanical Behavior of Powder Metallurgy Fe-mo-ni Steels
The microstructure and mechanical properties of Fe-0.85Mo-Ni powder metallurgy (P/M) steels were investigated as a function of sintered density. A quantitative analysis of microstructure was correlated with tensile and fatigue behavior to understand the influence of pore size, shape, and distribution on mechanical behavior. Tensile strength, Young’s modulus, strain-to-failure, and fatigue stren...
متن کاملNanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering
The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduc...
متن کاملInfluence of Adding SiC on Microstructure and Electrical Properties of ZnO-based Nanocomposite Varistor
In this research the influence of adding SiC on microstructure and electrical properties of ZnO-based Nanocomposite varistors were investigated. SiC was added with amounts of 10-0 mass% to ZnO-based varistor composition. It is found that SiC allows reaching to high threshold voltage with formation of fine-graine...
متن کاملMicrostructure and Mechanical Properties of Direct Metal Laser Sintered Ti- 6al-4v
Direct metal laser sintering (DMLS) is a selective laser melting (SLM) manufacturing process that can produce near net shape parts from metallic powders. A range of materials are suitable for SLM; they include various metals such as titanium, steel, aluminium, and cobalt-chrome alloys. This paper forms part of a research drive that aims to evaluate the material performance of the SLM-manufactur...
متن کامل